

Governing Equations

Heat Conduction Equation (with solidification):

$$\rho\left(\frac{\partial H(T)}{\partial T}\right)\left(\frac{\partial T}{\partial t}\right) = \frac{\partial}{\partial x}\left(k(T)\frac{\partial T}{\partial x}\right) + \frac{\partial}{\partial y}\left(k(T)\frac{\partial T}{\partial y}\right)$$

Equilibrium Equation (small strain assumption):

$$\nabla \cdot \boldsymbol{\sigma}(\mathbf{x}) + \mathbf{b}_{\mathbf{o}} = 0$$

Rate Representation of Total Strain Decomposition:

$$\dot{\boldsymbol{\epsilon}} = \dot{\boldsymbol{\epsilon}}_{el} + \dot{\boldsymbol{\epsilon}}_{ie} + \dot{\boldsymbol{\epsilon}}_{th}$$

Constitutive Law (Rate Form of elasticity eqs, No large rotations):

$$\dot{\boldsymbol{\sigma}} = \underline{\underline{\mathbf{D}}}: (\dot{\boldsymbol{\varepsilon}} - \dot{\boldsymbol{\varepsilon}}_{ie} - \dot{\boldsymbol{\varepsilon}}_{th}) \qquad \underline{\underline{\mathbf{D}}} = 2\mu \underline{\underline{\mathbf{I}}} + (k - \frac{2}{3})\mathbf{I} \otimes \mathbf{I}$$

Inelastic (visco-plastic) Strain Rate (strain-rate-independent plasticity + creep):

$$\dot{\overline{\mathbf{\epsilon}}}_{ie} = \mathbf{f}(\overline{\mathbf{\sigma}}, \mathbf{T}, \overline{\mathbf{\epsilon}}_{ie}, \% C) = \sqrt{\frac{2}{3}} \dot{\mathbf{\epsilon}}_{ie} : \dot{\mathbf{\epsilon}}_{ie} \qquad \overline{\mathbf{\sigma}} = \sqrt{\frac{3}{2}} \mathbf{\sigma}' : \mathbf{\sigma}' \quad , \ \mathbf{\sigma}' = \mathbf{\sigma} - \frac{1}{3} \operatorname{trace}(\mathbf{\sigma}) \mathbf{I}$$
Thermal Strain:

$$\left\{ \boldsymbol{\varepsilon}_{ih} \right\} = (\boldsymbol{\alpha}(T)(T - T_{ref}) - \boldsymbol{\alpha}(T_i)(\mathbf{T}_i - \mathbf{T}_{ref})) \left[111000 \right]^T$$

Grades Of Interest

Metals Processing Simulation Lab

Element	Ultra Low [wt%]	Low [wt%]	Peritectic [wt%]	High [wt%]
Carbon	0.003	0.040	0.130	0.470
Aluminum	0.040	0.040	0.040	0.040
Chromium	0.010	0.010	0.010	0.010
Copper	0.010	0.010	0.010	0.010
Manganese	0.080	0.200	0.500	0.750
Nickel	0.010	0.010	0.010	0.010
Phosphorus	0.010	0.010	0.010	0.010
Sulphur	0.010	0.010	0.010	0.010
Silicon	0.005	0.020	0.015	0.220
Titanium	0.050	0.050	0.050	0.050
MidPlane Temp	1540	1536	1527	1496
Centerline Temp	1534	1530	1521	1490
Liquidus	1532	1528	1519	1488
Solidus	1521	1505	1479	1419
Mushy Zone	11	23	40	69
Gamma End	697	695	687	693
Alpha Start	885	868	826	743
Delta End/Solidus	1363	1385	1446	1419
Delta End/Solidus	1379	1419	1479	1478
Gamma Start/Solidus	1521	1505	1484	1482
Liquidus	1532	1528	1519	1488
70% Solidus	1481.3	1485.1	1497.1	1467.3

3

4

Matthew Zappulla

The Liquid is modeled as a Perfectly-Plastic Solid

- Elastic Modulus: 1E4 [MPa]
- Poisson's Ratio: 0.3 [mm/mm] •
 - Yield Stress: 1E-2 [MPa]

Solidus Temperature Indicated with Dark Grey

Grade Phase Fractions

Heat Flux Data

- Collected and compiled from available data and the literature
- Regression curve fit for total heat flux data
- Avoid instabilities at zero
- Lower heat flux profile adopted for the Peritectic grade

Casting

Constitutive Equations

• P.F. Kozlowski, B.G. Thomas, J.A. Azzi, and H. Wang, "Simple Constitutive

 H. Zhu, "Coupled Thermo-Mechanical Finite-Element Model with Application to Initial Solidification." Ph.D. Thesis, University of Illinois at Urbana-

Equations for Steel at High Temperature." Metallurgical and Materials

Transactions, 23A (1992), No. 3, pg. 903-918.

Champaign, (1996).

 $\dot{\varepsilon}(s^{-1}) = f(C) \left[\sigma - f_1(T) \varepsilon |\varepsilon|^{f_2(T)-1} \right]^{f_3(T)} \exp\left(-\frac{4.465 \times 10^4 (K)}{T}\right)$ $f_1(T) = 130.5 - 5.128 \times 10^{-3}T$ $f_2(T) = -0.6289 + 1.114 \times 10^{-3}T$ $f_3(T) = 8.132 - 1.54 \times 10^{-3}T$ $f(C) = 4.655 \times 10^4 + 7.14 \times 10^4 C + 1.2 \times 10^5 C^2$ • **Ö-ferrite (Zhu modified power law):** $\dot{\varepsilon}(s^{-1}) = 0.1 \left| \sigma / f(C) (T/300)^{-5.52} (1 + 1000\varepsilon)^m \right|^n$

Austenite (Kozlowski model III):

 $\varepsilon(s) = 0.1[0/J(C)(1/300)]$ (1+1

 $f(C) = 1.3678 \times 10^4 (C)^{-5.56 \times 10^{-2}}$

 $m = -9.4156 \times 10^{-5} T + 0.3495$ $n = 1/1.617 \times 10^{-4} T - 0.06166$

Liquid modeled as a Perfectly-Plastic Solid

- Elastic Modulus: 1E4 [MPa]
 Poisson's Ratio: 0.3 [mm/mm]
- Poisson's Ratio: 0.3 [mm/mn
 Yield Stress: 1E-2 [MPa]

${\it T}$ in Kelvin, σ in MPa, ${\it C}$ in weight % C

University of Illinois at Urbana-Champaign	•	Metals Processing Simulation Lab	•	Matthew Zappulla	•	9
--	---	----------------------------------	---	------------------	---	---

ABAQUS Mesh Implementation nuous asting 400 Elements 40mm ٨ 0.3mm V 30 Elements Chilled Edge Element size = 0.1mm **Steel Shell Slice Model** CPEG4HRT Elements - Two dimensional **Piecewise Linear** Solid material Continuum Stress/Displacement (C) Generalized Plane Strain (PEG) Domain 4 nodes Reduced (R) iquid material Hybrid (H) Image: L. Hibbele One-Way Coupled Temperature Displacement (T) Stress Calculation has NO effect on Thermal Calculation University of Illinois at Urbana-Champaign Metals Processing Simulation Lab Matthew Zappulla 10

Elastic Strain Behavior

Casting

High Carbon Strain Behavior

Matthew Zappulla

Stress Perpendicular to Solidification Front

Ultra Low Carbon Strain Behavior

<figure>

University of Illinois at Urbana-Champaign

Conclusions

Metals Processing Simulation Lab

- Free shrinkage of a 1D continuous casting slice with varying grades was modeled
 - Stress analysis reveals behavior of compression at the surface moving towards tension at the solidification front
 - Uniform total strain
 - Increasingly negative total strain was observed with time
 - Strain first increases (squeezed by shrinking solid) then later decreases (liquid shrinkage)
 - An initial period of negative plastic strain development that does not persist
 - Not seen in the High Carbon Grade, due to the absence of delta ferrite

21

Matthew Zappulla

- Further development of an all encompassing model
- More grade accuracy by updating the phase diagram model

University of Illinois at Urbana-Champaign

Acknowledgements

Metals Processing Simulation Lab

 Continuous Casting Consortium Members (ABB, Arcelor-Mittal, Baosteel, Magnesita Refractories, Nucor Steel, Nippon Steel, Postech/Posco, Severstal, SSAB, Tata Steel, ANSYS-Fluent) 23

Matthew Zappulla